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‘Let us also recall that fundamental progress in homological algebra was achieved by
replacing module categories by arbitrary abelian categories. (. . . ) It is already clear

from [52] that, in proving some basic lemmas for Mal’cev varieties, one never uses the

fact that the category is varietal, but just that the semantical conditions hold. This
suggests that one should investigate a purely categorical notion, generalizing that

of an abelian category, to develop non-additive ‘variable’ homological arguments.’

A. Carboni, J. Lambek and M.C. Pedicchio in [22], 1990.

Abstract Mal’tsev categories turned out to be a central concept in cate-
gorical algebra. On one hand, the simplicity and the beauty of the notion
is revealed by the wide variety of characterizations of a markedly differ-
ent flavour. Depending on the context, one can define Mal’tsev categories
as those for which ‘any reflexive relation is an equivalence’; ‘any relation is
difunctional’; ‘the composition of equivalence relations on a same object is
commutative’; ‘each fibre of the fibration of points is unital’ or ‘the forgetful
functor from internal groupoids to reflexive graphs is saturated on subob-
jects’. For a variety of universal algebras, these are also equivalent to the
existence in its algebraic theory of a Mal’tsev operation, i.e. a ternary op-
eration p(x, y, z) satisfying the axioms p(x, x, y) = y and p(x, y, y) = x. On
the other hand, Mal’tsev categories have been shown to be the right context
in which to develop the theory of centrality of equivalence relations, Baer
sums of extensions, and some homological lemmas such as the denormalized
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3×3 Lemma, whose validity in a regular category is equivalent to the weaker
‘Goursat property’, which has also turned out to be of wide interest.

Introduction

The study of Mal’tsev categories originates from a classical theorem of
Mal’tsev in 1954 [54]. For a variety of universal algebras V (i.e., a category of
models of a finitary one-sorted algebraic theory), he proved that the following
conditions are equivalent:

(M1) The composition of congruences is commutative, i.e., for any two con-
gruences R and S on a same algebra in V, the equality RS = SR holds.

(M2) The theory of V contains a ternary term p satisfying the equations

p(x, x, y) = y and p(x, y, y) = x.

Varieties satisfying these conditions are now commonly called ‘Mal’tsev va-
rieties’ [60] (or 2-permutable varieties), and such a term p a ‘Mal’tsev op-
eration’. This result has been extended by Lambek a few years later in [51]
where he proved that these conditions are also equivalent to

(M3) Any homomorphic relation R in V is difunctional;

where difunctionality, a property introduced by Riguet [59], is the condition
RR◦R 6 R. Findlay [28] and Werner [61] further characterised Mal’tsev
varieties as those satisfying the condition

(M4) Any homomorphic reflexive relation in V is a congruence.

In his papers [51] and [52], Lambek generalized classical group theory
results, such as Goursat’s theorem and Zassenhaus lemma, to Mal’tsev
varieties. For instance, Goursat’s theorem attests that given a homomor-
phic relation R 6 A × B in a Mal’tsev variety V, the quotients AR/R◦R
and RB/RR◦ are isomorphic, where AR = {b ∈ B | ∃a ∈ A, aRb} and
RB = {a ∈ A | ∃b ∈ B, aRb}.

The proofs of these results relied on the so called calculus of relations
and could therefore be transposed to a categorical context, by translating
syntactic conditions into semantic ones. Actually, in her thesis [55] super-
vised by Lambek, Meisen showed that the equivalence between (M1), (M3)
and (M4) also holds for any exact category in the sense of Barr [1]. In that
context, Mal’tsev categories were introduced by Carboni, Lambek and Pedic-
chio in [22] where they developed some aspects of homological lemmas in a
non-abelian categorical context.

Although axiom (M1) must be stated in the context of categories with a
good factorisation system (as regular categories [1] for instance), axioms (M3)
and (M4) still make sense in any finitely complete category and turn out to
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be still equivalent in that context. Mal’tsev categories were thus defined by
Carboni, Pedicchio and Pirovano [24] as finitely complete categories satisfy-
ing (M4) (and thus (M3)). A good part of the theory of Mal’tsev categories
can be developed in the finitely complete setting.

Besides the homological aspects developed in [22], the Mal’tsev context
revealed itself particularly useful to develop the conceptual categorical no-
tion of centrality of equivalence relations. Smith [60] had already opened the
way in the varietal context, and then Janelidze made a further step by es-
tablishing a link between commutators and internal categories in Mal’tsev
varieties [40]. Then, partly based also on the results in [24], Pedicchio was
the first to explicitly consider a categorical approach to commutator theory
in exact Mal’tsev categories (with coequalizers) [57, 58] and in more general
categories [43]. With the introduction of the notion of connector [17], central-
ity was expressed in its simplest form, and it could be fully investigated in the
(regular) Mal’tsev context. Finally, in the exact context, the construction of
the Baer sum of extensions with abelian kernel equivalence relation emerged
in a very natural way [8, 13].

Several new results were later discovered in Mal’tsev categories in connec-
tion with the theory of central extensions [42, 26, 25], homological lemmas
[10, 31] and, recently, with (non-abelian) embedding theorems [20, 36, 37, 38].

The homological ambition of the initial project of Carboni, Lambek and
Pedicchio [22] was not totally achieved. As a matter of fact, this early work
was missing the notion of pointed protomodular category [6] which was nec-
essary to define and investigate the conceptual categorical notion of short
exact sequences. When furthermore the context is regular, it is then possi-
ble to establish the classical Short Five Lemma, the Noether isomorphism
theorems, the Chinese Remainder’s theorem, the Snake Lemma and the long
exact homology sequence [4].

In this article we review some of the most striking features of Mal’tsev
categories. In the first section, we study Mal’tsev operations and their prop-
erties. A partial version of them is used to define the notion of a connector
between equivalence relations. The second section is devoted to the definition
of Mal’tsev categories in the finitely complete context and relevant examples
are given. In the third section, we give many characterizations of Mal’tsev
categories showing the richness of the notion. One of them says that the fi-
bres of the fibration of points are unital, which implies the uniqueness of a
connector between two equivalence relations on a same object in a Mal’tsev
category. In Section 4, we study stiffly and naturally Mal’tsev categories. The
fifth section is devoted to regular Mal’tsev categories. We give an additional
characterization of them in this context via the notion of regular pushouts,
which makes the proof of the existence of a Mal’tsev operation in the varietal
context easier. In Section 6, we further study regular Mal’tsev categories us-
ing the calculus of relations. This naturally brings us to have a glance at the
weaker Goursat property, equivalent in the regular context to the denormal-
ized 3 × 3 Lemma. We conclude this article with Section 7 where we study
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Baer sums of extensions with abelian kernel equivalence relation in efficiently
regular Mal’tsev categories.
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1 Mal’tsev operations

Let us start with the Mal’tsev theorem on varieties of algebras.

Theorem 1 Let V be a variety of universal algebras. The following state-
ments are equivalent:

(M1) For any two congruences R and S on a same algebra in V, the equality
RS = SR holds.

(M2) The theory of V contains a ternary term p satisfying the equations

p(x, x, y) = y and p(x, y, y) = x.

(M3) Any homomorphic relation in V is difunctional, i.e., RR◦R 6 R.
(M4) Any homomorphic reflexive relation in V is a congruence.

Proof Let us start by proving (M2) ⇒ (M3). We consider a homomorphic
relation R 6 A× B in V and elements a1, a2 in A and b1, b2 in B such that
a1Rb1, a2Rb1 and a2Rb2. We deduce that

a1 = p(a1, a2, a2)Rp(b1, b1, b2) = b2

proving RR◦R 6 R.
We now prove (M4)⇒ (M1). Given two congruences R and S on the same

algebra A, the composition RS is reflexive and therefore a congruence by
assumption. Thus, RS = R ∨ S is the supremum of R and S in the lattice
of congruences on A. Indeed, R = R1A 6 RS and S 6 RS and given a
congruence T on A such that R 6 T and S 6 T , we have RS 6 TT = T .
Similarly, SR = S ∨R = R ∨ S = RS proving the desired commutativity.

The implication (M3) ⇒ (M4) immediately follows from the next lemma
and the proof of (M1)⇒ (M2) is postponed to Section 5 (Theorem 54). �



On the naturalness of Mal’tsev categories 5

Lemma 2 A homomorphic relation R 6 A× A is an equivalence relation if
and only if it is reflexive and difunctional.

Proof The ‘only if part’ being trivial, let us prove the ‘if part’. Assume R is
reflexive and difunctional. Let us first prove it is symmetric. If xRy for some
elements x and y in A, we know by reflexivity that yRy, xRy and xRx. Thus
difunctionality implies yRx which shows the symmetry of R. For transitivity,
let now x, y, z ∈ A be such that xRyRz. Since xRy, yRy and yRz, we have
xRz also by difunctionality, proving that R is transitive. �

Of course, this lemma can be generalized internally to any finitely complete
category using the Yoneda embedding.

Remark 3 The equivalence between (M2) and (M3) in Theorem 1 can be

displayed in the form of a matrix as

(
x y y x
u u v v

)
. Reading it vertically, this

matrix represents difunctionality of a relation. Indeed, a relation R 6 A×B is
difunctional when xRu, yRu and yRv (the left columns) imply xRv (the right
column). On the other hand, reading the matrix horizontally, the identities
p(x, y, y) = x and p(u, u, v) = v of (M2) appear. This phenomenon is not at
all a coincidence, and the general theory of such matrices has been introduced
in [46] to understand many properties of varieties of universal algebras related
to Mal’tsev conditions (such as (M2)) from a categorical perspective.

Let us now have a closer look at Mal’tsev operations.

Definition 4 A Mal’tsev operation on a set X is a ternary operation p :
X × X × X → X such that the identities p(x, x, y) = y and p(x, y, y) = x
hold for any x, y in X. A Mal’tsev algebra is a set X endowed with a Mal’tsev
operation. We denote by Mal the variety of Mal’tsev algebras (including the
empty set ∅).

Definition 5 Let X be a set and p : X ×X ×X → X a Mal’tsev operation.
We say that

• p is left associative if it satisfies the axiom:

p(p(x, y, z), z, w) = p(x, y, w)

• p is right associative if it satisfies the axiom:

p(x, y, p(y, z, w)) = p(x, z, w)

• p is associative if it satisfies the axiom:

p(p(x, y, z), u, v) = p(x, y, p(z, u, v))

• p is commutative if it satisfies the axiom:

p(x, y, z) = p(z, y, x)
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• p is autonomous if it is a morphism of Mal’tsev algebras X3 → X, i.e., if
it satisfies the axiom:

p(p(x1, y1, z1), p(x2, y2, z2), p(x3, y3, z3))

= p(p(x1, x2, x3), p(y1, y2, y3), p(z1, z2, z3))

Lemma 6 Let p be a right associative Mal’tsev operation p : X×X×X → X
on a set X. If x, y, a, b ∈ X are elements such that p(x, y, a) = p(x, y, b), then
a = b.

Proof It follows from
a = p(y, y, a) = p(y, x, p(x, y, a)) = p(y, x, p(x, y, b)) = p(y, y, b) = b. �

Proposition 7 Let p be a Mal’tsev operation p : X×X×X → X on a set X.
Then p is associative if and only if it is left associative and right associative.

Proof If p is associative, then we can compute

p(p(x, y, z), z, w) = p(x, y, p(z, z, w)) = p(x, y, w)

which proves that p is left associative. Right associativity is proved similarly.
If now p is both left associative and right associative, we can compute

p(p(x, y, z), u, v) = p(p(x, y, z), z, p(z, u, v)) = p(x, y, p(z, u, v))

which proves that p is associative. �

Proposition 8 Let p be a Mal’tsev operation p : X×X×X → X on a set X.
Then p is autonomous if and only if it is associative and commutative.

Proof We first assume that p is autonomous. We can then compute

p(p(x, y, z), u, v) = p(p(x, y, z), p(x, x, u), p(x, x, v))

= p(p(x, x, x), p(y, x, x), p(z, u, v)) = p(x, y, p(z, u, v))

and

p(x, y, z) = p(p(y, y, x), p(y, y, y), p(z, y, y))

= p(p(y, y, z), p(y, y, y), p(x, y, y)) = p(z, y, x)

proving associativity and commutativity.
Let us now assume that p is associative and commutative. In that case,

we have

p(p(y, z, u), x, p(p(x, y, z), u, v)) = p(p(p(y, z, u), x, p(x, y, z)), u, v)

= p(p(p(y, z, u), y, z), u, v) = p(p(p(u, z, y), y, z), u, v)

= p(p(u, z, z), u, v) = p(u, u, v) = v

= p(p(y, z, u), p(y, z, u), v) = p(p(y, z, u), x, p(x, p(y, z, u), v))
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showing via Lemma 6 that

p(p(x, y, z), u, v) = p(x, p(y, z, u), v).

Using this, together with left and right associativity and commutativity, we
have

p(p(x1, y1, z1), p(x2, y2, z2), p(x3, y3, z3))

= p(p(x1, p(x2, y2, z2), z1), y1, p(x3, y3, z3))

= p(p(x1, x2, p(y2, z2, z1)), y1, p(x3, y3, z3))

= p(x1, x2, p(p(y2, z2, z1), y1, p(x3, y3, z3)))

= p(x1, x2, p(x3, y1, p(p(y2, z2, z1), y3, z3)))

= p(x1, x2, p(x3, y1, p(p(y2, y3, z1), z2, z3)))

= p(x1, x2, p(x3, y1, p(y2, y3, p(z1, z2, z3))))

= p(p(x1, x2, x3), y1, p(y2, y3, p(z1, z2, z3)))

= p(p(x1, x2, x3), p(y1, y2, y3), p(z1, z2, z3))

which concludes the proof. �

Now that we have studied some properties of Mal’tsev operations and how
they interplay, we can define the notion of a connector of equivalence relations
as in [16] (slightly more general than the notion of pregroupoid, due to A.
Kock [49], see also [48]):

Definition 9 Let R and S be two equivalence relations on a same object X
in a finitely complete category, and consider the following pullback:

R×X S
pS1 //

pR0
��

S

dS0
��

R
dR1

// X

A connector between R and S is a morphism p : R×X S → X satisfying the
following axioms:

1. xSp(xRySz) and p(xRySz)Rz;

x
R

S

y
S

p(xRySz)
R

z

2. p is a partial Mal’tsev operation, i.e., p(xRxSy) = y and p(xRySy) = x;
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3. p is left and right associative, i.e., p(p(xRySz)RzSw) = p(xRySw) and
p(xRySp(yRzSw)) = p(xRzSw).

In this case we say that the connector p makes R and S centralize each other.

By the (partial version of) Proposition 7, such a connector is associative,
i.e., for any element x, y, z, u, v ∈ X such that xRySzRuSv, we have

p(p(xRySz)RuSv) = p(xRySp(zRuSv)).

Example 10 If ∇X represents the largest equivalence relation on X, a con-
nector between∇X and∇X is simply an associative Mal’tsev operation on X.

Given an arrow f : T → X we write (Eq[f ], p1, p2) for its kernel pair which
is underlying an equivalence relation defined by the pullback

Eq[f ]
p2 //

p1

��

T

f

��
T

f
// X.

Example 11 Given a relation (f, g) : T � X × Y and the associated kernel
equivalence relations Eq[f ] and Eq[g] of f and g, respectively, this relation T
is difunctional if and only if Eq[f ] and Eq[g] centralize each other.

Example 12 [24, 40] Given a reflexive graph

X1

d0 //

d1

// X0s0oo

in a finitely complete category and Eq[d0] and Eq[d1] the kernel equivalence
relations of d0 and d1 respectively, connectors between Eq[d0] and Eq[d1] are
in 1-to-1 correspondence with groupoid structures on the reflexive graph.

Considering again two equivalence relations R and S on X in a finitely
complete category, we define R�S via the following pullback

R�S // //
��

��

S × S
��
s×s
��

R×R //
r×r
// X4

tw2,3

// X4

where tw2,3 : X4 → X4 is the isomorphism defined by tw2;3(x, y, w, z) =
(x,w, y, z). In set theoretical terms, R�S is the set of four-tuples (x, y, w, z)
such that xRy, wRz, xSw and ySz, often depicted as:
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x
R

S

y

S

w
R

z

We also consider the factorization

α : R�S → R×X S : (x, y, w, z) 7→ (x, y, z). (1)

If R∩S = ∆X (the discrete relation on X), this factorization is a monomor-
phism. Indeed, if (x, y, w, z) and (x, y, w′, z) are in R�S, then wRzRw′ and
wSxSw′, showing that w(R ∩ S)w′ and thus w = w′.

Moreover, given a connector p : R ×X S → X, we can construct a section
for α : R�S → R×X S via

R×X S → R�S : (x, y, z) 7→ (x, y, p(x, y, z), z).

These observations lead us to the following proposition.

Proposition 13 Given two equivalence relations R and S on the same object
X in a finitely complete category, if R ∩ S = ∆X , then there is at most one
connector between R and S.

2 Mal’tsev categories

2.1 Definition and examples

As mentioned in the introduction, the definition of a Mal’tsev category is of
an undisputable simplicity [22, 24]:

Definition 14 A category E is said to be a Mal’tsev one, when it is finitely
complete and such that any reflexive relation in E is an equivalence relation.

A typical example of such a category is the category Gp of groups since it
satisfies condition (M2) of Theorem 1 with the term p(x, y, z) = xy−1z.

The class of examples can be quickly extended thanks to the following
straightforward lemma:

Lemma 15 Given a left exact conservative functor U : E → E′ between
finitely complete categories, the category E is Mal’tsev if E′ is Mal’tsev.

So, considering the forgetful functors to the category Ab of abelian groups,
the category Rg of rings and, given a ring A, any category of A-modules and
A-algebras are immediately Mal’tsev.
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The variety Mal of Mal’tsev algebras produces a Mal’tsev category accord-
ing to the Mal’tsev theorem. More generally, it is the case for any Mal’tsev va-
riety V, considering the left exact conservative forgetful functor: U : V→ Mal.
On the other hand, given any category E, the functor category F(E,V) is
clearly a Mal’tsev category as well.

The variety Heyt of Heyting algebras is a Mal’tsev variety [60]. From that,
the dual Setop of the category of sets, and more generally the dual Eop of any
elementary topos E is a Mal’tsev category [21]. It is also the case for the dual
of the category of compact Hausdorff spaces [21]. Another source of examples
is given by the following straightforward observation:

Lemma 16 The notion of Mal’tsev category is stable under slicing and coslic-
ing.

This means that, when E is a Mal’tsev category, so are the slice categories
E/Y and the coslice categories Y/E, for any object Y ∈ E. Accordingly, any
fibre PtY E of the fibration of points is a Mal’tsev category (see the definition
before Theorem 23 below).

2.2 Yoneda embedding for internal structures

Considering internal algebras of a Mal’tsev variety, one gets a third important
source of examples. Any object X in a category E produces a functor:

Y (X) = HomE(−, X) : Eop → Set

This, in turn, produces a fully faithful functor: E → F(Eop,Set) which is
called the Yoneda embedding. It is left exact when, in addition, the category E
is finitely complete, the left exactness property being a synthetic translation
of the universal properties of the finite limits.

Given any algebraic theory T defined by any number of operations with
finite arity and any number of axioms, we shall denote by V(T) the associated
variety, and by T(E) the category of the internal T-algebras in the finitely
complete category E. Then there is a canonical factorization YT making the
following diagram commute:

T(E)
YT //

UE
T

��

F(Eop,V(T))

F(Eop,UT)

��
E

Y
// F(Eop,Set)

where UT and UE
T are the induced forgetful functors, which are both left exact

and conservative. Accordingly they are faithful and reflect finite limits as well.
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Proposition 17 The functor YT is fully faithful and left exact.

Proof The faithfulness is straightforward. Now, given a pair (M,M ′) of T-
algebras in E, any natural transformation θ : HomE(−,M)→ HomE(−,M ′)
in F(Eop,V(T)) has an underlying natural transformation θ : HomE(−,M)→
HomE(−,M ′) in F(Eop,Set). From it, the Yoneda embedding Y produces a
map f : M →M ′ in E; it remains to check that it is a homomorphism of T-
algebras, i.e. that some diagrams commute in E. This, again, can be checked
via the faithfulness of the Yoneda embedding.

The left exactness of the embedding YT is a consequence of the fact that
the three other functors are left exact and that UT reflects finite limits. �

So the functor YT is left exact and conservative, and according to Lemma 15
we get:

Proposition 18 Given any finitely complete category E, if V(T) is a Mal’tsev
variety then the category T(E) is Mal’tsev.

3 Characterizations

An immediate aspect of the richness of the notion of Mal’tsev category is
that there are at least three types of characterization of very distinct nature.

3.1 Unital characterization

For the first one we need the following:

Definition 19 [7] A category E is said to be unital when it is pointed, finitely
complete and such that, for any pair (X,Y ) of objects in E, the following pair
of monomorphisms:

X // jX0 =(1X ,0) // X × Y Yoo
jY1 =(0,1Y )oo

is jointly extremally epic. A category E is said to be strongly unital when
it is pointed, finitely complete and such that any reflexive relation R on an
object X which is right punctual (i.e. containing jX1 ) is the largest equivalence
relation on X.

The previous terminology is justified by the following:

Lemma 20 Any strongly unital category is unital.
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Proof Consider the following diagram

U
��

(f,g)

��

// // T
��

t

��

ψ // U
��

(f,g)

��
X × Y //

u0×u1 //

=
//U × U

f×g //
X × Y

where (f, g) : U � X × Y is a relation containing jX0 and jY1 through maps
u0 and u1 and where the right hand side square is a pullback. It determines
a unique factorization U � T making the left hand side square a pullback as
well. The relation T on U is defined by (xUy)T (x′Uy′) if and only if xUy′.
Accordingly it is a reflexive relation. Now the map u1 insures that, for all
xUy, we have (0U0)T (xUy); namely the relation T is right punctual. So that
we have T = ∇U and t is an isomorphism. According to the left hand side
pullback, the map (f, g) is itself an isomorphism, and E is unital. �

The categories Mon, CoM and SRg of monoids, commutative monoids and
semi-rings are unital categories; they are not Mal’tsev categories since, with
the order N of the natural numbers, they have a reflexive relation which
is not an equivalence relation. When E is finitely complete, the categories
Mon(E), CoM(E), and SRg(E) of internal monoids, internal commutative
monoids and internal semi-rings are so. This is the case in particular of the
category Mon(Top) of topological monoids. More generally, a pointed variety
V is unital if and only if it is a Jonsson-Tarski variety, see [4].

Lemma 21 Any pointed Mal’tsev category is strongly unital.

Proof Given any right punctual reflexive relation R on X, it is a right punc-
tual equivalence relation. It follows that R = ∇X . �

Accordingly the categories Gp, Ab and Rg of groups, abelian groups and
rings are strongly unital categories. When E is finitely complete, the cate-
gories Gp(E), Ab(E), and Rg(E) of internal groups, internal abelian groups
and internal rings are so. This is the case in particular of the category
Gp(Top) of topological groups. More generally, a pointed variety of algebras
V is strongly unital if and only if it has a unique constant 0 and a ternary
operation p satisfying p(x, x, y) = y and p(x, 0, 0) = x, see [4]. Again we have:

Lemma 22 Given any left exact conservative functor U : E → E′ between
finitely complete categories, the category E is (resp. strongly) unital as soon
as so is E′.

We denote by Pt(E) the category whose objects are the split epimorphisms
equipped with a given section and whose maps are the pairs of morphisms
commuting with the split epimorphisms and the given sections:
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X

f

��

x // X ′

f ′

��
Y

s

OO

y
// Y ′

s′

OO

We also denote by πE : Pt(E) → E the functor associating with any split
epimorphism (f, s) its codomain Y . It is a fibration whose cartesian maps
are the pullbacks of split epimorphisms. It is called the fibration of points
and the fibre above Y is denoted by PtY E, see [6]. We are now ready for the
first characterization theorem:

Theorem 23 Given a finitely complete category E, the following conditions
are equivalent:
1) any (pointed) fibre PtY E of the fibration of points is unital;
2) any relation (f, g) : R� X × Y in E is difunctional;
3) E is a Mal’tsev category;
4) any fibre PtY E is strongly unital.

Proof 1) ⇒ 2): Suppose that any fibre PtY E is unital. First, let us focus
our attention on the following observation: given a pair (R,S) of reflexive
relations on an object X such that R ∩ S = ∆X , the commutative square
vertically indexed by 0 and horizontally indexed by 1 in the following diagram
is a pullback:

R�S

pR0

��
pR1

��

pS0

//

pS1 //
S

dS0

��
dS1

��

oo

R
dR0

//

dR1 //

OO

X

OO

oo

Indeed, by R ∩ S = ∆X , we know that the factorization R�S → R ×X S
is a monomorphism. Since PtXE is a unital category, it is an isomorphism
in presence of the left hand side vertical section and of the upper horizontal
one. Then the map dS1 · pS0 : R�S → X produces a connector. Now let be
given any relation (f, g) : R→ X × Y in E. By Eq[f ]∩Eq[g] = ∆R, we get a
connector and the relation R is difunctional, by Example 11.
2) ⇒ 3): Follows from Lemma 2.
3)⇒ 4): When E is a Mal’tsev category, we noticed that so is any fibre PtY E,
which is consequently strongly unital.
4) ⇒ 1): Follows from Lemma 20. �

Thanks to Theorem 1.2.12 in [4], the point 2) gives rise to the following:

Corollary 24 A finitely complete category E is Mal’tsev if and only if any
commutative square of split epimorphisms (with yf ′ = fx, xs′ = sy, s′sy =
sxs and f ′sx = syf)
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X ′

f ′
����

x // // X

f
����

oo
sx

oo

Y ′
OO s
′

OO

y // // Y

OO
s

OO

oo
sy

oo

is a regular pushout, namely such that the factorization from X ′ to the pull-
back of f along y is an extremal epimorphism.

Remark 25 As observed by Z. Janelidze [45], one can add one more equiva-
lent condition to Theorem 23. Recall that a subtractive category is a finitely
complete pointed category for which every left punctual reflexive relation is
right punctual. A finitely complete category E is a Mal’tsev category if and
only if any fibre PtY E is subtractive.

3.2 Centralization of equivalence relations

In this section we are going to show how this first characterization exemplifies
that the Mal’tsev context is the right conceptual one to deal with the notion
of centrality of equivalence relations.

The major interest of unital categories is that it allows one to define an
intrinsic notion of commutation of morphisms. When E is a unital category,
the pair (jX0 , j

Y
1 ) is jointly epic; accordingly, in the following diagram, there

is at most one arrow φ making the following triangles commute:

X

f
$$

// jX0 // X × Y

φ

��

Yoo
jY1oo

f ′zz
Z

and the existence of such a factorization becomes a property.

Definition 26 [9, 34] Let E be a unital category. We say that a pair (f, f ′)
of morphisms with common codomain commutes (or cooperates) when there
is such a factorization map φ which is called the cooperator of the pair.
We say that the map f : X → Y is central when the pair (f, 1Y ) cooperates
and that the object X is commutative when the pair (1X , 1X) cooperates.

We shall denote by Com(E) the full subcategory of commutative objects
in E. We immediately get:

Proposition 27 Let E be a unital category. An object X is commutative if
and only if it is endowed with a structure of commutative internal monoid
which is necessarily unique. Any morphism between commutative objects is
an internal morphism of monoids.
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We are going to show that the previous characterization theorem reduces
the question of centralization of equivalence relations to a question of commu-
tation in the fibres of the fibration of points. Indeed, in a Mal’tsev category,
any equivalence relation R on X is completely determined as the following
subobject in the fibre PtXE:

R

dR0

$$

// (d
R
0 ,d

R
1 ) // X ×X

pX0

��
X

sX0

OO
sR0

dd

We shall denote it by ρR : ΥR � Υ∇X
. First observe that, given any pair

(R,S) of equivalence relations on X, the product of ΥR◦ and ΥS in this fibre
coincides with the pullback introduced in Definition 9:

R×X S

pR0
��

pS1

// S

dS0
��

σS
1oo

R

σR
0

OO

dR1

// X

sS0

OO

sR0oo

Then observe that the pair of subobjects (ρR◦ , ρS) commutes in the unital
fibre PtXE if and only if there is a map (dS0 .p

S
1 , p) : R ×X S → X ×X in E

such that we get p · σR0 = dR0 and p · σS1 = dS1 , namely the Mal’tsev axioms.
Accordingly there is a unique possible connector p : R×X S → X making the
pair (R,S) centralize each other. So, in a Mal’tsev category, centralization
of equivalence relations becomes a property; we shall denote it as usual by
[R,S] = 0.

Proposition 28 [16, 14] Let E be a Mal’tsev category, and (R,S) two equiv-
alence relations on X. The pair (R,S) centralizes each other if and only if
the pair of subobjects (ρR◦ , ρS) commutes in the fibre PtXE. This implies
in particular that a pair (R,S) admits at most one map p : R ×X S → X
satisfying the Mal’tsev axioms and that this map is necessarily a connector.

Proof The previous observation shows that if the pair (R,S) centralizes each
other in E, then the pair (ρR◦ , ρS) commutes in the fibre PtXE. Conversely
suppose that this pair commutes; we have to show that all the axioms of
Definition 9 hold. For that, first introduce on R ×X the relation H defined
by (xRy)Hz if and only if we have ySz and xSp(xRySz). For any xRySz ∈
R×X S we get the following diagram relatively to the relation H:
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xRy

##

// y

yRy //

<<

z

Since E is a Mal’tsev category, the relation H is a difunctional relation, and
we get (xRy)Hz, namely xSp(xRySz). We get p(xRySz)Rz in the same way.

Now define the relation K on R× (R×X S) by (xRy)K(ȳRzSw) by y = ȳ
and p(xRySp(yRzSw)) = p(xRzSw). We get this last identity for all xRy
and yRzSw by the following diagram:

xRy

&&

// yRzSz

yRy //

88

yRzSw

We get p(p(xRySz)RzSw) = p(xRySw) in the same way. �

Corollary 29 Let E be a Mal’tsev category, and (R,S) two equivalence rela-
tions on X. We have [R,S] = 0 as soon as R ∩ S = ∆X .

Proof Straightforward from the first part of the proof of Theorem 23. �

The following stability properties easily follow:

Proposition 30 [17] Let E be a Mal’tsev category. Let also R,R′, S be equiv-
alence relations on X and R̄, S̄ on Y . Then we get:
(a) [R,S] = 0 ⇐⇒ [S,R] = 0
(b) R′ ⊂ R and [R,S] = 0 ⇒ [R′, S] = 0
(c) [R,S] = 0 and [R̄, S̄] = 0 ⇒ [R× R̄, S × S̄] = 0
(d) when u : U � X is a monomorphism, we get:
[R,S] = 0⇒ [u−1(R), u−1(S)] = 0

Proof See Propositions 3.10, 3.12 and 3.13 in [17]. �

Definition 31 Let E be a Mal’tsev category. An equivalence relation R on
an object X is said to be abelian when we have [R,R] = 0 and central
when we have [R,∇X ] = 0. An object X is said to be affine when we have
[∇X ,∇X ] = 0.

We shall denote by Aff(E) the full subcategory of affine objects in E.

Proposition 32 Let E be a Mal’tsev category. When an equivalence relation
R on X is abelian, then the connector p realizing [R,R] = 0 is such that
p(xRyRz) = p(zRyRx). An object X is affine if and only if it is endowed
with a (necessarily unique) internal Mal’tsev operation which is necessarily
associative and commutative. Any morphism between affine objects commutes
with the internal Mal’tsev operations.
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Proof Define on R the relation L define by (x, y)L(z, w) if and only if we
have y = z and p(xRyRw) = p(wRyRx). The following diagram holds when
R is abelian and determines our assertion:

xRy

$$

// yRy

yRy //

::

yRz

The next point is just the description of the connector p associated with the
centralization [∇X ,∇X ] = 0. �

Corollary 33 Let E be a Mal’tsev category. Aff(E) is stable under finite prod-
ucts and subobjects in E. An internal abelian group in E is just a pointed affine
object 0A : 1� A.

Proof It is a direct consequence of points (c) and (d) in Proposition 30 and
of Proposition 32. �

3.3 Groupoid characterization

Let us denote respectively by RG(E) and Grpd(E) the categories of internal
reflexive graphs and of internal groupoids in any finitely complete category E.
The forgetful functor WE : Grpd(E) → RG(E) is left exact and conservative.
As such, it is faithful and any monomorphism of Grpd(E) is hypercartesian
with respect to WE.
Internal groupoids

According to Example 12 following which a groupoid is a reflexive graph
endowed with a connector p on the pair (Eq[d0],Eq[d1]), we immediately get
the first part of the following:

Lemma 34 Given a Mal’tsev category E, there is on any reflexive graph
at most one groupoid structure. Moreover, the induced inclusion functor
WE : Grpd(E) � RG(E) is full [24] and such that any sub-reflexive graph
of a groupoid is itself a groupoid [7].

Proof Let be given a morphism of reflexive graphs:

X1

d0 ��
d1��

f1 // Y1

d0 ��
d1��

X0
f0

//

OO

Y0

OO

When these reflexive graphs are underlying groupoid structures, the commu-
tation of this morphism with the connectors is checked by composition with
the extremally epic pair involved in the definition of Eq[d0]×X0 Eq[d1].
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Now given any subobject (f0, f1) : X � Y in RG(E) with Y a groupoid,
the inverse image f−1

0 (Y) along f0 determines a subobject:

X1

d0
��

d1
��

// φ1 // f−1
0 (Y)

d′0 ��
d′1��

X0

OO

X0

OO

where the right hand side part is a groupoid as well. Now Eq[di] = φ−1
1 (Eq[d′i])

so that X is underlying a groupoid structure by the point d) in Proposi-
tion 30. �

Whence another characterization theorem:

Theorem 35 [7] Given any finitely complete category E, the following con-
ditions are equivalent:
1) E is a Mal’tsev category;
2) the forgetful functor WE : Grpd(E) → RG(E) is saturated on subobjects,
namely any subobject n : X � WE(Y) in RG(E) is the image, up to isomor-
phism, of a monomorphism m : X� Y in Grpd(E).

Proof [1) ⇒ 2)] is a direct consequence of the previous lemma. Suppose 2)
and start with a reflexive relation R on X. Then condition 2) applied to the
inclusion R� ∇X in RG(E) makes R an equivalence relation. �

Internal categories
Now, what are the internal categories in a Mal’tsev category? The answer is

given by the following result which provides us with another characterization
of internal groupoids.

Proposition 36 [24, 14] Let E be a Mal’tsev category and X1

d0 //

d1

// X0s0oo

an internal reflexive graph. The following conditions are equivalent:
1) the following subobjects commute in the fibre PtX0E:

X1
//
(d0,1X1

)
//

d0

$$

X0 ×X1

pX0

��

X1
oo

(d1,1X1
)

oo

d1

zzX0

s0
dd

(1X0
,s0)

OO
s0

::

2) this reflexive graph is underlying an internal category;
3) this reflexive graph is underlying an internal groupoid.

Proof The two subobjects commute in PtX0
E if and only if they have a

cooperator φ : X1 ×X0 X1 → X0 × X1, i.e. a morphism satisfying φ · s0 =
(d1, 1X1), φ · s1 = (d0, 1X1), pX0 · φ = d0d2 and φ · s1s0 = (1X0 , s0):
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X1 ×X0
X1

φ

��

d2

zz

d0

$$

X1
//
(d0,1X1

)
//

d0

%%

s1

::

X0 ×X1

pX0

��

X1
oo

(d1,1X1
)

oo

d1

yy

s0

dd

X0

s0
ee

(1X0
,s0)

OO
s0

99

where the whole quadrangle is the pullback which defines the internal object
X1 ×X0

X1 of composable pairs of the reflexive graph. So the morphism φ
is necessarily a pair of the form (d0d2, d1), where d1 : X1 ×X0

X1 → X1 is
such that d1s0 = 1X1 , d1s1 = 1X1 . The incidence axioms: d0d1 = d0d0,
d1d1 = d1d2 come by composition with the upper jointly extremally epic pair
(s0, s1). Accordingly this map d1 produces a composition for the composable
pairs. Let us set X2 = X1×X0

X1. In order to check the associativity we need
the following pullback which defines X3 as the internal objects of ‘triples of
composable morphisms’:

X3
d0

//

d3

��

X2

s0oo

d2

��
X2

d0

//

s2

OO

X1

s0oo

s1

OO

The composition map d1 induces a unique couple of maps (d1, d2) : X3 ⇒ X2

such that d0d1 = d0d0, d2d1 = d1d3 and d0d2 = d1d0, d2d2 = d2d3. The asso-
ciativity axiom is given by the remaining simplicial axiom: (3) d1d1 = d1d2.
The checking of this axiom comes with composition with the pair (s0, s2) of
the previous diagram since it is jointly extremally epic as well.

Conversely, the composition morphism d1 : X1×X0
X1 → X1 of an internal

category satisfies d1s0 = 1X1
, d1s1 = 1X1

and consequently produces the
cooperator φ = (d0d2, d1). Whence 1) ⇔ 2).

It is clear that 3) ⇒ 2). It remains to check 2) ⇒ 3). Starting with an
internal category, consider the following diagram in the fibre PtX0E:

X1 ×X0
X1

(d0,d1) //

d0 &&

Eq[d0]
d1

//

d0

��

X1

s1oo

d0

��

s1

��

X1
d0

//

s0

OO
s0

ff

X0

s0oo

s0

OO

First let us show that (d0, d1) is a monomorphism, namely that the composi-
tion is right cancelable. So, consider the relation H on (Eq[d0]∩Eq[d1])×X1
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(where Eq[d0]∩Eq[d1] is the object of ‘parallel maps’ in the internal category)
defined by (α, β)Hγ if d0(α) = d1(γ) and α ·γ = β ·γ. The following diagram
shows that (α, β)H1d1(γ), namely that α = β, as soon as α · γ = β · γ:

(α, β)

''

// γ

(1d1(γ), 1d1(γ)) //

77

1d1(γ)

Accordingly (d0, d1) : X1 ×X0
X1 � Eq[d0] produces a reflexive (due to

the s0) and right punctual (commutation of the s1) relation on the object
(d0, s0) : X1 � X0 in the strongly unital fibre PtX0

E. Accordingly it is an
isomorphism and the internal category is an internal groupoid. �

3.4 Base-change characterization

The next characterization is dealing with the base-change functor along split
epimorphisms with respect to the fibration of points.

Definition 37 Given a split epimorphic pair of functors (T,G) : E � E′,
(T ◦ G = 1E′), this pair is called correlated (resp. strongly correlated) on
monomorphisms when, given any monomorphism m : Z � G(X) in E, the
morphism GT (m) : GT (Z) → G(X) factorizes through m (resp. factorizes
through m via an isomorphism).

Lemma 38 Given a split epimorphic pair of functors (T,G), if it is correlated
on monomorphisms, then any monomorphism m : Z � G(X) such that T (m)
is an isomorphism is itself an isomorphism. When E is finitely complete and
T is left exact, we have the converse.

Proof Suppose the pair is correlated and T (m) an isomorphism. Then, so is
GT (m) and the monomorphism m is a split epimorphism as well. Accordingly
it is an isomorphism. When T is left exact and m : Z � G(X) a monomor-
phism, the map T (m) is a monomorphism as well. Now consider the following
pullback in E:

P
��

m̄
��

// Z
��
m
��

GT (Z)
GT (m)

// G(X)

It is preserved by T so that T (m̄) is an isomorphism. Under our assumption,
so is m̄; and GT (m) factorizes through m. �

If f : Y → X is a morphism in a finitely complete category E, we de-
note by f∗ : PtXE → PtY E the base-change functor obtained by pullback
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along f . If E is pointed, we denote by αX (resp. τX) the unique morphism
0 → X (resp. X → 0) for any object X. From the above lemma, it is easy
to check that, given a finitely complete pointed category E, it is unital if and
only if for any object X the split epimorphic pair of base-change functors
(α∗X , τ

∗
X) : PtXE � Pt0E ∼= E is correlated on monomorphisms. A bit more

difficult is the same characterization dealing with strongly unital categories
and strongly correlated pairs (α∗X , τ

∗
X); for that see [7] and the second asser-

tion of the following:

Proposition 39 Let (T,G) : E � E′ be a split epimorphic pair of functors
with E finitely complete and T left exact. If it is correlated on monomor-
phisms, then the faithful functor G is full as well. It is strongly correlated if
and only if the functor G is saturated on subobjects.

Proof Suppose we have a map f : G(U) → G(V ), then take the equalizer
j : W � G(U) of the pair (f,GT (f)). The functor T being left exact, its
image T (j) is an isomorphism. Accordingly j is itself an isomorphism, and f =
GT (f). So, G is full. When the pair (T,G) is strongly correlated and m : Z �
G(X) is a monomorphism, then n = T (m) is the monomorphism whose
image by G is isomorphic to m. Conversely, if G is saturated on subobjects,
starting with a monomorphism m : Z � G(X), denote by γ : Z → G(W ) the
isomorphism such that m ∼= G(n) for a monomorphism n : W � X. Then
the map γ−1 ·GT (γ) : GT (Z)→ Z produces the desired isomorphism making
the pair (T,G) strongly correlated. �

Whence, now, the third characterization:

Theorem 40 [7] Let E be a finitely complete category. It is Mal’tsev if and
only if, given any split epimorphism (f, s) in E, the (left exact) base-change
functor f∗ with respect to the fibration of points is saturated on subobjects
(and consequently full).

Proof By Theorem 23, the category E is Mal’tsev if and only if any fibre
PtY E is strongly unital, which is the case if and only if, for any split epimor-
phism (f, s), the pair (s∗, f∗) is strongly correlated. According to the last
proposition, it is the case if and only if f∗ is saturated on subobjects. �

This last characterization is also important because, in the regular context,
we shall show that it could be extended to any regular epimorphism f in E
(see Theorem 52).

4 Stiffly and naturally Mal’tsev categories

There are obviously two extremal situations satisfied by Mal’tsev categories:
any equivalence relations R and S on a same object centralize each other and
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the only pairs (R,S) of equivalence relations centralizing each other are the
ones such that R ∩ S = ∆X .

The following notion was introduced by P. Johnstone in [47] (more pre-
cisely, he defined this notion via the equivalent formulation 2 in Theorem 45
below):

Definition 41 [47] A Mal’tsev category is naturally Mal’tsev if [R,S] = 0
for any equivalence relations R and S on a same object.

Any finitely complete additive category is naturally Mal’tsev. So is the
subcategory Aff(E) of any Mal’tsev category E.

Definition 42 We say that a Mal’tsev category is stiffly Mal’tsev if for any
equivalence relations R and S on a same object, [R,S] = 0 if and only if
R ∩ S = ∆X .

The categories BoRg of boolean rings and CNRg of commutative von Neu-
mann regular rings are examples of stiffly Mal’tsev categories. The variety
Heyt of Heyting algebras being a stiffly Mal’tsev category, so are the dual
Setop of the category of sets, and more generally the dual Eop of any elemen-
tary topos E in view of the left exact conservative functor Eop → Heyt(E) [4].

Clearly the two notions are stable under slicing and coslicing. For the next
respective characterizations, we need the following:

Definition 43 A linear category is a unital category where any object is
commutative. A stiffly unital category is a unital category in which the 0
object is the unique commutative object.

When E is unital, the subcategory Com(E) is linear. The category BoSRg
of boolean semi-rings is stiffly unital.

Theorem 44 [4] Given any Mal’tsev category E, the following statements
are equivalent:
1) E is a stiffly Mal’tsev category;
2) the only internal groupoids are the equivalence relations;
3) any fibre PtY E is stiffly unital;
4) the only abelian equivalence relations are the discrete ones.

Proof 1) ⇒ 2): Consider any internal groupoid: X1

d0 //

d1

// X0s0oo . We have

[Eq[d0],Eq[d1]] = 0 and thus Eq[d0] ∩ Eq[d1] = ∆X1 . So, (d0, d1) : X1 �
X0 ×X0 is a monomorphism, and the groupoid is an equivalence relation.
2)⇒ 3): A split epimorphism (f, s) : X � Y is a commutative object in PtY E,
when it is endowed with a monoid structure in this fibre, namely when it is
an internal category structure with d0 = f = d1. According to Proposition 36
it is a groupoid. So (f, f) and thus f are monomorphisms. Being a split epi-
morphism as well, f is an isomorphism, i.e. a 0 object in PtY E.
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3) ⇒ 4): Given any equivalence relation R on X, we have [R,R] = 0 if and
only if the split epimorphism (dR0 , s

R
0 ) : R� X is endowed with a commuta-

tive monoid structure in the fibre PtXE. So, dR0 is an isomorphism and we
get R ∼= ∆X .
4) ⇒ 1): If we have [R,S] = 0, we get [R∩S,R∩S] = 0; so R∩S = ∆X and
we get 1). �

Theorem 45 [47, 7] Given any Mal’tsev category E, the following statements
are equivalent:
1) E is a naturally Mal’tsev category;
2) any object X is endowed with a natural Mal’tsev operation pX ;
3) any fibre PtY E is linear;
4) any fibre PtY E is additive;
5) any reflexive graph is endowed with a groupoid structure.

Proof We have [1)⇔ 2)] with the connector pX : X×X×X → X associated
with the centralization [∇X ,∇X ] = 0, see Proposition 32. Now, [1) ⇒ 5)] is
straightforward. We get [5)⇒ 4)] since any split epimorphism (f, s) : X � Y
is a particular reflexive graph, which, by 5), gives to (f, s) an internal group
structure in the fibre PtY E. Now [4)⇒ 3)] is a consequence of the fact that
any finitely complete additive category is linear. Suppose 3) and consider the
split epimorphism (pY0 , s

Y
0 ) : Y × Y → Y . It has a monoid structure in the

fibre PtY E, which is a ternary operation pY : Y ×Y ×Y → Y in E. It satisfies
the unit axioms which, for pY , turn to be exactly the two Mal’tsev axioms
in E. �

5 Regular Mal’tsev categories

An equivalence relation is called effective when it is the kernel pair of some
morphism. A map f is said to be a regular epimorphism when f is the co-
equalizer of two parallel arrows in E. Recall from [1]:

Definition 46 A finitely complete category E is regular when:
(a) regular epimorphisms are stable under pullbacks;
(b) any effective equivalence relation Eq[f ] has a coequalizer.
It is exact when, in addition:
(c) any equivalence relation in E is effective.

Any variety V of universal algebras is an exact category. Given any map
f in a regular category the quotient qf of the kernel equivalence relation
Eq[f ] produces a canonical decomposition f = m ·qf where m is a monomor-
phism [1]. Given any regular epimorphism g : X � Y and any equivalence re-

lation R on X, the canonical decomposition of the map R� X×X
g×g
� Y ×Y

produces a reflexive relation S on Y . When E is a Mal’tsev category, it is an
equivalence relation we shall denote by g(R). Now we have the following:



24 D. Bourn, M. Gran and P.-A. Jacqmin

Proposition 47 [17] Let E be a regular Mal’tsev category and g : X � Y a
regular epimorphism. If (R,S) is a pair of centralizing equivalence relations
on X, then the equivalence relations g(R) and g(S) also centralize each other.
In particular, when X is an affine object, so is Y .

When, moreover, the category E is finitely cocomplete, we can produce
the commutator of any pair of equivalence relations:

Proposition 48 [11, 4] Let E be a finitely cocomplete regular Mal’tsev cat-
egory. If (R,S) is a pair of equivalence relations on X, there is a universal
regular epimorphism ψ : X � Y such that we get [ψ(R), ψ(S)] = 0. In par-
ticular the inclusion Aff(E)� E has a left adjoint.

Remark 49 Given two equivalence relations R and S on a same object in
a finitely cocomplete regular Mal’tsev category, the commutator [R,S] of R
and S can be defined as the kernel equivalence relation Eq[ψ] of the morphism
ψ : X � Y from the above proposition.

Remark 50 The Mal’tsev context being the right conceptual one to deal
with the notion of centrality of equivalence relations, it is not unexpected to
observe that it is also the right context to deal with nilpotency as well [3].

In the regular context we get the following observations and characteriza-
tion:

Lemma 51 Let E be a regular Mal’tsev category and the following diagram
be any pullback of a split epimorphism f along a regular epimorphism q:

X ′
q′ // //

f ′

��

X

f

��
Y ′

q
// //

s′

OO

Y

s

OO

Then the upward square is a pushout.

Proof Consider any pair (φ, σ) of morphisms such that φ · s′ = σ · q (∗):

Eq[q′]

Eq(f ′)

��

dq
′

1

//

dq
′

0 //
X ′oo

f ′

��

q′ // //

φ ++

X

f

��

T

Eq[q]

Eq(s′)

OO

dq1

//

dq0 //
Y ′oo

q
// //

s′

OO

Y
σ

DDs

OO

and complete the diagram by the kernel pairs Eq[q] and Eq[q′] which produce
the left hand side pullbacks. The morphism q′ being a regular epimorphism,
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it is the quotient of its kernel pair Eq[q′]. We shall obtain the desired fac-

torization X → T by showing that φ coequalizes the pair (dq
′

0 , d
q′

1 ). The left
hand side squares being pullbacks, this can be done by composition with the

jointly extremal pair (Eq(s′), sq
′

0 ), with sq
′

0 : X ′� Eq[q′] the diagonal giving

the reflexivity of Eq[q′]. This is trivial for the composition with sq
′

0 , and a
consequence of the equality (∗) for the composition with Eq(s′). �

Theorem 52 [7] Given any regular category E, it is a Mal’tsev category if
and only if any base-change functor q∗ with respect to the fibration of points
along a regular epimorphism q is fully faithful and saturated on subobjects.

Proof Any split epimorphism being a regular one, the condition above implies
that E is a Mal’tsev category thanks to Theorem 40. Let us show the converse.
First notice that in any regular category, and given any regular epimorphism
q, the base-change q∗ is necessarily faithful. Suppose, in addition, that E is
a Mal’tsev category.
1) The functor q∗ is full. Consider the following diagram:

X ′
m′

""f ′

��

q′ // // X

f

��

X̄ ′

f̄ ′

��

q̄ // // X̄

f̄

��
Y ′

q
// //

s′

OO

s̄′

CC

Y

s̄

DD

s

OO

where the downward squares are pullbacks and m′ a morphism in PtY ′E.
According to the previous lemma the upward vertical square is a pushout;
whence a unique map m : X → X̄ such that m · q′ = q̄ ·m′ and m · s = s̄; we
get also f̄ ·m = f since q′ is a regular epimorphism, and m is a map in the
fibre PtY E such that q∗(m) = m′.

2) The functor q∗ is saturated on subobjects. First, any base-change func-
tor g∗, being left exact, preserves monomorphisms. Consider now the follow-
ing diagram where the right hand side quadrangle is a pullback and m is a
monomorphism in PtY E:

Eq[q̄ ·m]

Eq(f ′)

��

&&
Eq(m) &&

δ1

//
δ0 //

X ′ !!
m
!!

oo

f ′

��

Eq[q̄]

~~

dq̄1

//

dq̄0 //
X̄ ′oo

f̄ ′

��

q̄ // // X̄

f̄

��
Eq[q]

Eq(s′)

OO

dq1

//

dq0 //

>>

Y ′oo
q

// //

s′

OO

s̄′

DD

Y

s̄

FF
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Complete the diagram with the kernel pair Eq[q̄ ·m]. The factorization Eq(m)
is a monomorphism. In the Mal’tsev context, this implies that any of the
left hand side commutative squares is a pullback: indeed, since Eq(m) is a
monomorphism, it is also the case for the factorization τ of the left hand side
square indexed by 0 to the pullback of (f ′, s′) along the split epimorphism
(dq0, s

q
0); but it is an extremal epimorphism as well, since E is a Mal’tsev

category, by Condition 1 in Theorem 23; so it is an isomorphism.
So, the following downward left hand side diagram is underlying a discrete

fibration between equivalence relations. Now, denote by q′ the quotient of the
effective relation Eq[q̄ ·m], and by (f, s) the induced split epimorphism.

Eq[q̄ ·m]

Eq(f ′)

��

δ1

//
δ0 //

X ′oo

f ′

��

q′ // // X

f

��
Eq[q]

Eq(s′)

OO

dq1

//

dq0 //
Y ′oo

q
// //

s′

OO

Y

s

OO

By the so-called Barr-Kock Theorem [1, 18], the right hand side square is a
pullback in the regular category E. Since q∗ is full, m determines a factoriza-
tion n : X → X̄ in the fibre PtY E:

Eq[q̄ ·m]

Eq(f ′)

��

&&
Eq(m) &&

δ1

//
δ0 //

X ′ !!
m
!!

oo

f ′

��

q′ // // X

f

��

n
��

Eq[q̄]

~~

dq̄1

//

dq̄0 //
X̄ ′oo

f̄ ′

��

q̄ // // X̄

f̄

��
Eq[q]

Eq(s′)

OO

dq1

//

dq0 //

>>

Y ′oo
q

// //

s′

OO

s̄′

DD

Y

s

OO

s̄

EE

The upper right hand side quadrangle is a pullback since the two other right
hand side commutative squares are so. Accordingly we get m = q∗(n) and
n is a monomorphism since pulling back along regular epimorphisms reflects
monomorphisms [1]. �

From Corollary 24, we get another characterization:

Corollary 53 A regular category E is Mal’tsev if and only if any morphism
in Pt(E) with horizontal regular epimorphisms

X ′

f ′
����

x // // X

f
����

Y ′
OO s
′

OO

y
// // Y

OO
s

OO
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is a regular pushout, namely such that the factorization from X ′ to the pull-
back of f along y is a regular epimorphism.

Proof Clearly if this condition holds, it holds in particular for horizontal
split epimorphisms. Then the conclusion is given by Corollary 24. Conversely,
suppose E is a regular Mal’tsev category, and complete the square by the
horizontal kernel equivalence relations:

Eq[x]

Eq(f ′)

��

χ ""
dx1

//

dx0 //
X ′

ψ

  

oo

vv

x // //

f ′

��

X

f

��

P̄

��

δ1

//

δ0
66

P

��

q̄
66 66

Eq[y]

Eq(s′)

OO

dy1

//

dy0 //

BB

Y ′oo
y

// //

s′

OO

DD

Y

s

OO

Then denote by ψ (resp. χ) the factorization from X ′ to the pullback of
f along y (resp. from Eq[x] to the pullback of f ′ along dy0). The map χ is
a regular epimorphism according to Corollary 24. Moreover the quadrangle
x · δ0 = q̄ · δ1 is a pullback, and, E being regular, the factorization δ1 is a
regular epimorphism, since so is x. Then the equality ψ · dx1 = δ1 · χ shows
that ψ is a regular epimorphism, since so is δ1 · χ. �

As mentioned in the first section, in the case of a variety V of universal
algebras, the Mal’tsev property can be expressed by a ternary term p(x, y, z)
satisfying the identities p(x, y, y) = x and p(x, x, y) = y [54]. We shall prove
the existence of such a term by adopting a categorical approach, first consid-
ered in [23], based on an interpretation of a suitable regular pushout lying in
the full subcategory of free algebras.

Theorem 54 A variety V of universal algebras is a Mal’tsev category if and
only if its algebraic theory has a ternary term p satisfying the identities
p(x, y, y) = x and p(x, x, y) = y.

Proof In Theorem 1 it is shown that the existence of the Mal’tsev term p
implies that the variety is a Mal’tsev category.

Conversely, assume that V is a Mal’tsev variety, and denote by X the free
algebra on one element, by X +X the free algebra on two elements, and by
X + X + X the free algebra on three elements. If ∇ : X + X → X is the
codiagonal, then the following diagram commutes:

X +X +X
∇+1X//

1X+∇
��

X +X

∇
��

X +X
∇

// X
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This diagram is clearly a regular pushout by Corollary 53, so that the canon-
ical factorization α : X + X + X → Eq[∇] to the kernel pair of ∇ in V is a
regular epimorphism, i.e. a surjective homomorphism. We can then choose
the element (q, r) ∈ Eq[∇], where q(x, y) = x and r(x, y) = y, and we know
that there is a ternary term p(x, y, z) ∈ X + X + X with α(p) = (q, r).
Consider then the following commutative diagram

X +X X +X +X
∇+1X //

α

��

1X+∇oo X +X

Eq[∇]

p1

88

p0

ff

where p0 and p1 are the projections of the kernel pair Eq[∇]. When applied
to the term p, its commutativity exactly expresses the announced identities
p(x, y, y) = x and p(x, x, y) = y for the term p. �

Remark 55 The categorical notion of regular pushout, introduced in full gen-
erality in [10] in relationship with the 3 × 3 Lemma, is also related to the
notion of double extension [41], that was first considered by G. Janelidze in
the category of groups. This latter notion has turned out to play a central
role in the theory of (higher) central extensions of an exact Mal’tsev category.
Indeed, the possibility of inductively defining higher dimensional categorical
Galois structures starting from a Birkhoff reflective subcategory of an exact
Mal’tsev category also depends on the existence of double extensions and
their higher versions (see [42, 27, 26, 25] and the references therein). For
instance, the higher homology of groups, compact groups and crossed mod-
ules can be better understood from this categorical perspective, and many
new computations can be made thanks to the characterizations of the higher
central extensions relative to the higher dimensional Galois structures.

Remark 56 The essence of the definition of regular categories is to cap-
ture the categorical properties of Set which concern finite limits and regular
epimorphisms. This has been formalized by Barr’s embedding theorem [2]
which claims that for any small regular category E there exists a fully faith-
ful left exact embedding into a presheaf category E ↪→ SetC which preserves
the regular epimorphisms. Since in a presheaf category limits and quotients
are computed componentwise, with this embedding theorem it is enough to
prove some statements about finite limits and regular epimorphisms in Set
(i.e. using elements) in order to prove it in full generality for any regular cat-
egory, see [4] for more details. This embedding theorem has been extended
to the regular Mal’tsev case in [36]. An essentially algebraic (i.e. locally pre-
sentable) regular Mal’tsev category M is constructed such that any small reg-
ular Mal’tsev category E admits a conservative left exact embedding E ↪→MC

which preserves the regular epimorphisms. This category M is constructed via
some partial operations and ‘approximate Mal’tsev operations’ [20]. In the
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same way as with Barr’s embedding theorem, one can now reduce the proof
of some statements about finite limits and regular epimorphisms in any reg-
ular Mal’tsev category to the particular case of M and thus use elements and
(approximate) Mal’tsev operations. Similar embedding theorems also hold in
the regular unital and strongly unital case, see [37, 35]. Using partial Mal’tsev
operations, one also has an embedding theorem for (non necessarily regular)
Mal’tsev categories [38, 35].

We now observe that, in any exact Mal’tsev category E, the category
Cat(E) = Grpd(E) of internal categories (=internal groupoids) and inter-
nal functors inherits the exactness property from the base category E. The
category Catn(E) of n-fold internal categories is defined by induction by
Cat1(E) = Cat(E) and Catn+1(E) = Cat(Catn(E)) for n ≥ 1.

Theorem 57 [29] Let E be an exact Mal’tsev category. Then:

1. the category Cat(E) of internal categories in E is exact Mal’tsev;
2. the category Catn(E) of n-fold internal categories in E is exact Mal’tsev,

for any n ≥ 1.

Proof 1. As shown in [24] the category Cat(E) is a full subcategory of the
category RG(E) of reflexive graphs in E (Lemma 34). Next, given any
internal functor (f0, f1) : X→ Y in Cat(E)

X1 ×X0 X1

p0

��
p1

��
m
��

f2 // Y1 ×Y0
Y1

p0

��
p1

��
m
��

X1

d0 ��
d1��

f1 // Y1

d0 ��
d1��

X0
f0

//

OO

Y0

OO

it has a canonical factorization in the category RG(E) of reflexive graphs
as

X1

d0 ��
d1��

q1 // // I1

d0 ��
d1��

// i1 // Y1

d0 ��
d1��

X0 q0
// //

OO

I0

OO

//
i0

// Y0

OO

where f0 = i0 · q0 and f1 = i1 · q1 are the (regular epi)-mono factoriza-
tions of f0 and of f1 in E, respectively. The induced reflexive graph I in
the middle of the diagram above is underlying a groupoid structure (by
Lemma 34, for instance), and the factorization above is then the (regular
epi)-mono factorization in Cat(E) of the internal functor (f0, f1). These
factorizations are clearly pullback stable in Cat(E), since regular epimor-
phisms in E are pullback stable by assumption. One then checks that
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any internal equivalence relation in Cat(E) is a kernel pair (see Theo-
rem 3.2 in [29]) to conclude that Cat(E) is an exact category. The fact
that Cat(E) is a Mal’tsev category immediately follows from Lemma 15
and the fact that the forgetful functor Cat(E) → RG(E) to the Mal’tsev
category RG(E) is left exact and conservative.

2. By induction, this follows immediately from the first part of the proof. �

This result shows a difference with the case of a general exact category E,
for which the category Cat(E) is not even regular, in general. For instance,
the ordinary category Cat(Set) = Cat of small categories and functors is not
regular (the same can be said for the category of small groupoids).

Let us conclude this section by mentioning the important result in [21]
asserting that a regular category C is a Mal’tsev category if and only if any
simplicial object in C is an internal Kan complex.

6 Regular Mal’tsev categories and the calculus of
relations

The aim of this section is to briefly recall the calculus of relations in a reg-
ular category and present some instances of its usefulness in the context of
Mal’tsev and Goursat categories [22, 21]. We shall also give a categorical re-
sult concerning the direct product decomposition of an object coming from
universal algebra.

Given a relation 〈r0, r1〉 : R → X × Y , its opposite relation R◦ is the
relation from Y to X given by the subobject 〈r1, r0〉 : R → Y ×X. Given
two relations 〈r0, r1〉 : R → X × Y and 〈s0, s1〉 : S → Y × Z in a regular
category, their composite SR = S ◦R → X × Z can be defined as follows:
take the pullback

R×Y S
π1 //

π0

��

S

s0

��
R

r1
// Y

of r1 and s0, and the (regular epi)-mono factorization of 〈r0π0, s1π1〉:

R×Y S
〈r0π0,s1π1〉 //
** **

X × Z.

S ◦R
44

44

The composite S ◦ R is defined as the relation S ◦R // // X × Z in the
diagram above. Note that the transitivity of a relation R on an object X
can be expressed by the inequality R ◦ R 6 R, and the symmetry by the
inequality R◦ 6 R (or, equivalently, by R◦ = R).



On the naturalness of Mal’tsev categories 31

In the following, given an arrow f : A→ B in E, we shall identify it to the
relation 〈1A, f〉 → A × B representing its graph. For any arrow f : A → B
the corresponding relation is difunctional:

f ◦ f◦ ◦ f = f.

Note also that
f ◦ f◦ = 1B

if and only if f is a regular epimorphism, while f◦ ◦ f = Eq[f ]. Finally, with
the notations we have introduced, any relation 〈r0, r1〉 : R → X × Y can be
written as the composite R = r1 ◦ r◦0 .

Theorem 58 [55, 22] For a regular category E, the following conditions are
equivalent:

(M1) for any pair of equivalence relations R and S on any object X in E,
S ◦R = R ◦ S;

(M3) any relation U from X to Y is difunctional;
(M4) E is a Mal’tsev category;
(M5) any reflexive relation R on any object X in E is symmetric;
(M6) any reflexive relation R on any object X in E is transitive.

Proof (M1)⇒ (M3) As observed above, any relation

U
u0

~~

u1

��
X Y

can be written as U = u1 ◦u◦0. The assumption implies in particular that the
kernel pairs Eq[u0] and Eq[u1] of the projections commute in the sense of the
composition of relations (on the object U):

(u◦1 ◦ u1) ◦ (u◦0 ◦ u0) = (u◦0 ◦ u0) ◦ (u◦1 ◦ u1).

Accordingly, by keeping in mind that the relations u0 and u1 are difunctional:

U = u1 ◦ u◦0
= (u1 ◦ u◦1 ◦ u1) ◦ (u◦0 ◦ u0 ◦ u◦0)

= u1 ◦ (u◦1 ◦ u1) ◦ (u◦0 ◦ u0) ◦ u◦0
= u1 ◦ (u◦0 ◦ u0) ◦ (u◦1 ◦ u1) ◦ u◦0
= (u1 ◦ u◦0) ◦ (u0 ◦ u◦1) ◦ (u1 ◦ u◦0)

= U ◦ U◦ ◦ U.

(M3) ⇒ (M4) This appears already as Theorem 23. Using the calculus of
relations, we can proceed as follows. Let (U, u0, u1) be a reflexive relation on
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an object X, so that 1X ≤ U . By difunctionality we have:

U◦ = 1X ◦ U◦ ◦ 1X ≤ U ◦ U◦ ◦ U = U,

showing that U is symmetric. On the other hand:

U ◦ U = U ◦ 1X ◦ U ≤ U ◦ U◦ ◦ U = U,

and U is transitive.
(M4)⇒ (M5) Clear.
(M5)⇒ (M3) Let (U, u0, u1) be a relation from X to Y . The relation

u◦0 ◦ u0 ◦ u◦1 ◦ u1

is reflexive, since both the kernel pairs u◦0 ◦ u0 and u◦1 ◦ u1 are reflexive. By
assumption the relation u◦0 ◦ u0 ◦ u◦1 ◦ u1 is then symmetric:

(u◦0 ◦ u0 ◦ u◦1 ◦ u1)◦ = u◦0 ◦ u0 ◦ u◦1 ◦ u1.

This implies that

u◦1 ◦ u1 ◦ u◦0 ◦ u0 = u◦0 ◦ u0 ◦ u◦1 ◦ u1,

and then, by multiplying on the left by u1 and on the right by u◦0 we get the
equality

u1 ◦ u◦1 ◦ u1 ◦ u◦0 ◦ u0 ◦ u◦0 = u1 ◦ u◦0 ◦ u0 ◦ u◦1 ◦ u1 ◦ u◦0.

By difunctionality of u1 and u◦0 it follows that

u1 ◦ u◦0 = u1 ◦ u◦0 ◦ u0 ◦ u◦1 ◦ u1 ◦ u◦0,

and then
u1 ◦ u◦0 = (u1 ◦ u◦0) ◦ (u1 ◦ u◦0)◦ ◦ (u1 ◦ u◦0),

showing that U = u1 ◦ u◦0 is difunctional.
Observe that (M4)⇒ (M6) is obvious, and let us then prove that (M6)⇒

(M3). Let U = u1 ◦ u◦0 be any relation from X to Y . The relation

u◦1 ◦ u1 ◦ u◦0 ◦ u0

is reflexive, thus it is transitive by assumption. This gives the equality

(u◦1 ◦ u1 ◦ u◦0 ◦ u0) ◦ (u◦1 ◦ u1 ◦ u◦0 ◦ u0) = u◦1 ◦ u1 ◦ u◦0 ◦ u0,

yielding

u1 ◦ u◦1 ◦ u1 ◦ u◦0 ◦ u0 ◦ u◦1 ◦ u1 ◦ u◦0 ◦ u0 ◦ u◦0 = u1 ◦ u◦1 ◦ u1 ◦ u◦0 ◦ u0 ◦ u◦0.
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By difunctionality we conclude that

u1 ◦ u◦0 ◦ u0 ◦ u◦1 ◦ u1 ◦ u◦0 = u1 ◦ u◦0,

and
U ◦ U◦ ◦ U = U.

Finally, to see that (M5) ⇒ (M1), observe that the relation S ◦ R is
reflexive, and then it is symmetric, so that

S ◦R = (S ◦R)◦ = R◦ ◦ S◦ = R ◦ S,

concluding the proof. �

Direct product decompositions

In any regular category E, given two equivalence relations R and S on X
such that R ◦S = S ◦R, the composite R ◦S is then an equivalence relation:
indeed, the relation R ◦ S is obviously reflexive, but also symmetric, since

(R ◦ S)◦ = S◦ ◦R◦ = S ◦R = R ◦ S,

and transitive:

(R ◦ S) ◦ (R ◦ S) = R ◦R ◦ S ◦ S = R ◦ S.

The equivalence relation R ◦ S is then the supremum R ∨ S of R and S as
equivalence relations on X. When this is the case, by Proposition 2.3 in [19],
the canonical morphism α : R�S → R×X S in the following diagram:

R�S

α

%%

p1

  

p0

!!

R×X S
pS1 //

pR0
��

S

dS0
��

R
dR1

// X

from the largest double equivalence relation R�S on R and S to the pullback
R×X S is a regular epimorphism. We then get the following:

Theorem 59 [19] Let E be an exact category, R and S two equivalence re-
lations on X such that:

• R ∧ S = ∆X ;



34 D. Bourn, M. Gran and P.-A. Jacqmin

• R ◦ S = S ◦R and
• R ∨ S = ∇X .

Then X is isomorphic to X/R×X/S.

Proof The first two assumptions imply that any of the commutative squares
on the left hand side in the diagram

R�S

p0

��

p1

��

p0 //

p1

// Soo

s0

��

s1

��

τ // // T

t0

��

t1

��
R

r1
//

r0 //

OO

X

OO

qR
// //

OO

oo X/R

OO (2)

is a pullback (since the canonical morphism R�S → R ×X S in (1) is both
a monomorphism and a regular epimorphism). The right-hand part of the
diagram is obtained by taking the quotient X/R of X by the equivalence
relation R, and the quotient T of S by the equivalence relation R�S on
S, with t0 and t1 the induced factorizations. The fact that the equivalence
relation R�S on S is the inverse image of the relation R × R on X × X
implies that (t0, t1) : T → X/R × X/R is a monomorphism. The relation T
actually is an equivalence relation (by Theorem 3 in [5]), and the so-called
Barr-Kock theorem [1, 18] implies that the following square is a pullback

X
qR // //

qS
����

X/R

γ

����
X/S

β
// // Q

where γ : X/R → Q is the quotient of X/R by T and β : X/S → Q the
unique induced factorization. This square is also a pushout (since τ in the
diagram (2) is a regular epimorphism), and in the exact category E this
implies that the kernel pair Eq[γ · qR] of γ · qR is the supremum R ∨ S of
R and S as (effective) equivalence relation on X. Since R ∨ S = ∇X , we
conclude that Q is the quotient of X by ∇X , therefore it is a subobject of
the terminal object 1. Accordingly, the following diagram is a pullback

X
qR // //

qS
����

X/R

��
X/S // 1

and X ∼= X/R×X/S, as expected. �
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Remark 60 In any exact category E, the product X X × Y
p1 //p0oo Y

of two objects X and Y is such that Eq[p0]∧Eq[p1] = ∆X×Y , Eq[p0]◦Eq[p1] =
Eq[p1] ◦ Eq[p0] and Eq[p0] ∨ Eq[p1] = ∇X×Y . Theorem 59 can then be seen
as a kind of converse to this simple observation.

Remark 61 We observe that the assumptions in Theorem 59 are the (cate-
gorical formulations of the) properties defining a pair of factor congruences
in the sense of universal algebra.

If the base category E is exact Mal’tsev we immediately get the following:

Corollary 62 Let E be an exact Mal’tsev category. Whenever two equivalence
relations R and S on the same object X are such that R ∧ S = ∆X and
R ∨ S = ∇X , then there is a canonical isomorphism X ∼= X/R×X/S.

A glance at Goursat categories

We now briefly recall and study some basic properties of Goursat categories.
The origin of this important concept definitely goes back to the celebrated
article [22] by A. Carboni, J. Lambek and M.C. Pedicchio, although the
explicit definition and a first systematic study of Goursat categories was
presented later in [21].

Definition 63 A regular category E is a Goursat category if for any two
equivalence relations R and S on the same object X in E one has the equality

R ◦ S ◦R = S ◦R ◦ S.

Remark that a variety of universal algebras is a Goursat category if and
only if it is 3-permutable in the usual sense [33]. Any regular Mal’tsev cate-
gory is clearly a Goursat category, however the converse is not true: indeed,
the variety of implication algebras is an example of a 3-permutable variety,
and therefore of an exact Goursat category, that is not 2-permutable [56].

A remarkable categorical property of Goursat categories is that the regular
image of any equivalence relation is again an equivalence relation. This is
actually characteristic of these categories, as shown in [21]. Here below we
give a simple and self-contained proof of this result:

Proposition 64 A regular category E is a Goursat category if and only if
for any equivalence relation R on any object X and any regular epimorphism
f : X � Y , the regular image f(R) is an equivalence relation.

Proof One implication is direct: in a regular category E the relation f(R) is
always reflexive and symmetric, and when E is a Goursat category then it is
also transitive:
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f(R) ◦ f(R) = (f ◦R ◦ f◦) ◦ (f ◦R ◦ f◦)
= f ◦ f◦ ◦ f ◦R ◦ f◦ ◦ f ◦ f◦ = f ◦R ◦ f◦ = f(R).

Note that the assumption has been used in the second equality.
For the converse, consider two equivalence relations R and S on X. Then

the composite R ◦ S ◦R can be written as

R ◦ S ◦R = r1 ◦ r◦0 ◦ s1 ◦ s◦0 ◦ r1 ◦ r◦0 = r1 ◦ r◦0 ◦ s1 ◦ s◦0 ◦ r0 ◦ r◦1 = r1(r−1
0 (S)),

as observed in [12]. The assumption then implies that R ◦S ◦R is an equiva-
lence relation, as a direct image of the equivalence relation r−1

0 (S) along the
split epimorphism r1 (which is then a regular epimorphism). Its transitivity
implies that S ◦R ◦ S ≤ R ◦ S ◦R, and then S ◦R ◦ S = R ◦ S ◦R. �

This characterization and the so-called denormalized 3×3-Lemma [10, 50]
inspired a new characterization of Goursat categories in terms of a special
kind of pushouts:

Definition 65 [30] Consider a commutative square (with y · f = f ′ · x and
x · s = s′ · y)

X

f

��

x // // X ′

f ′

��
Y

s

OO

y
// // Y ′

s′

OO (3)

where the vertical morphisms are split epimorphisms and the horizontal ones
are regular epimorphisms. This square is a pushout, and it is called a Goursat
pushout if the induced morphism Eq[f ]→ Eq[f ′] is a regular epimorphism.

Proposition 66 [30] A regular category E is a Goursat category if and only
if any commutative diagram (3) is a Goursat pushout.

Proof If E is a Goursat category we know that the regular image x(Eq[f ])
can be computed as follows:

x(Eq[f ]) = x ◦ f◦ ◦ f ◦ x◦ = x ◦ x◦ ◦ x ◦ f◦ ◦ f ◦ x◦ ◦ x ◦ x◦

= x ◦ f◦ ◦ f ◦ x◦ ◦ x ◦ f◦ ◦ f ◦ x◦ = x ◦ f◦ ◦ y◦ ◦ y ◦ f ◦ x◦

= x ◦ x◦ ◦ f ′◦ ◦ f ′ ◦ x ◦ x◦ = f ′
◦ ◦ f ′ = Eq[f ′]

where we have used the Goursat assumption, the commutativity of the dia-
gram (3), and fact that x is a regular epimorphism, so that x ◦ x◦ = 1X′ .

For the converse, consider an equivalence relation S on an object X and
a regular epimorphism f : X � Y . The regular image f(S) = T is certainly
reflexive and symmetric, and by Proposition 64 it suffices to show that it is
also transitive. Since S is symmetric and transitive, we know that there exists
a morphism τS such that the diagram
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Eq[s0]

p0

��
p1

��

τS // S

s0

��
s1

��
S

s1
//

OO

X

OO

commutes. Moreover, the diagram

S

s0

��

f // // f(S) = T

t0

��
X

OO

f
// // Y

OO

is of type (3), the upward pointing arrows being the morphisms giving the
reflexivity of S and T , respectively. It follows that the factorization f̃ induced
by the universal property of the kernel pair Eq[t0] - and making the square

Eq[s0]

fτS
��

f̃ // // Eq[t0]

τT

zz
(t1×t1)(p0,p1)

��
T //

(t0,t1)
// Y × Y

commute - is a regular epimorphism by the assumption. Since (t0, t1) is a
monomorphism, it follows that there is a unique morphism τT making the
diagram above commute, and τT makes the diagram

Eq[t0]

p0

��
p1

��

τT // T

t0

��
t1

��
T

t1
//

OO

Y

OO

commute. It follows that the relation T is transitive, as desired. �

When V is a variety of universal algebras, a direct application of this
characterization to a suitable Goursat pushout in the category of free algebras
- a similar argument to the one used above to prove Theorem 54 - yields a
categorical proof (see [30]) of the following well known Theorem.

Theorem 67 For a variety V the following conditions are equivalent:

1. V is a 3-permutable variety;
2. in the algebraic theory of V there are two quaternary terms p and q sat-

isfying the identities p(x, y, y, z) = x, q(x, y, y, z) = z, and p(x, x, y, y) =
q(x, x, y, y).
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More generally, for any n ≥ 2, other characterizations of n-permutable
varieties in terms of ternary operations and identities are considered in [32, 39]
using categorical arguments (see also the references therein).

We conclude this section with another characterization of Goursat cate-
gories, whose proof is based on the calculus of relations and on the notion of
Goursat pushout. It concerns commutative diagrams of the form

Eq[φ]

p0

��
p1

��

h0

//
h1 //

Eq[f ]

p0

��
p1

��

h //oo Eq[g]

p0

��
p1

��
Eq[h]

φ
����

p0

//
p1 //

OO

A

OO

f
����

h // //oo C

OO

g
����

K
k0

//
k1 //

B
k
// //oo D

(4)

(i.e. for any i, j ∈ {0, 1}, pipj = pjhi, hpj = pjh, fpi = kiφ, and kf = gh)
where the three columns and the middle row are exact (i.e. regular epimor-
phisms equipped with their kernel pairs):

Theorem 68 [50, 30] For a regular category E the following conditions are
equivalent:

• E is a Goursat category;
• the Upper 3× 3 Lemma holds in E: given any commutative diagram (4),

the upper row is exact whenever the lower row is exact;
• the Lower 3× 3 Lemma holds in E: given any commutative diagram (4),

the lower row is exact whenever the upper row is exact;
• the 3 × 3 Lemma holds in E: given any commutative diagram (4), the

lower row is exact if and only if the upper row is exact.

Note that this homological lemma was not foreseen in the original project
in [22]. Regular Mal’tsev categories can also be characterized by a stronger
version of the denormalized 3× 3 Lemma, called the Cuboid Lemma [31].

Remark 69 In a similar way as Mal’tsev categories were first defined in the
regular context and later studied in the finitely complete context, Goursat
categories can be defined without the assumption of regularity, see [15].

7 Baer sums in Mal’tsev categories

In this last section, we shall be interested in those extensions, namely regular
epimorphisms f : X � Y , which have abelian kernel equivalence relations,
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and we shall show that, from the Mal’tsev context, emerges a very natural
notion of Baer sums. Such an extension is actually nothing but an affine object
with global support in the slice category E/Y . So, we shall show that, in any
Mal’tsev category being sufficiently exact, we are able to associate, with any
affine object with global support, an abelian object, called its direction, and
to show as well that the set (up to isomorphisms) of the affine objects with
global support and a given direction A is endowed with a canonical abelian
group structure on the (non-Mal’tsev) general model of [8]. By sufficiently
exact, we mean the following:

Definition 70 [13] A regular category E is said to be efficiently regular when
any equivalence relation R on an object X which is a subobject i : R �
Eq[f ] of an effective equivalence relation is effective as well as soon as the
monomorphism i is regular, i.e. is the equalizer of some pair of morphisms.

The categories Ab(Top) and Gp(Top) of (resp. abelian) topological groups
are examples of non-exact efficiently regular categories. The major interest of
such a category is that any discrete fibration between equivalence relations
R→ Eq[g] makes R effective as well [13]. Note that this latter property could
also be guaranteed by the assumption that the base category E is regular and
that regular epimorphisms in E are effective descent morphisms (see [44], for
instance, for more details).

In this section we shall suppose that E is an efficiently regular Mal’tsev
category. Take now any affine object X with global support (namely such
that the terminal map τX : X → 1 is a regular epimorphism) and consider
the following diagram where p : X × X × X → X is the internal Mal’tsev
operation on X giving rise to the affine structure:

X ×X ×X

pX0

��

(p,pX1 ·p
X
1 )

��

pX2

//

(pX0 ·p
X
1 ,p)//

X ×X

pX0

��

pX1

��

oo
qXp // // A

τA

����
X ×X

pX1

//

pX0 //

OO

X
τX

// //oo

OO

1

0A

OO

Definition 71 [8] The upper horizontal reflexive relation (which is an equiv-
alence relation) is called the Chasles relation Chp associated with the internal
Mal’tsev operation p.

In set-theoretic terms we get (x, p(x, y, z))Chp(y, z) or, in other words,
(x, y)Chp(x

′, y′) if and only if y = p(x, x′, y′). The operation p is commuta-
tive (which is the case in any Mal’tsev category) if and only if we get the
equivalence:

(x, y)Chp(x
′, y′) ⇐⇒ (y′, y)Chp(x

′, x)
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Since E is efficiently regular and since the left hand side square indexed
by 0 is a discrete fibration between equivalence relations, the equivalence
relation Chp is effective, and so has a quotient qXp which, since τX is a regular
epimorphism, produces the split epimorphism (τA, 0A) and makes the right
hand side square a pullback. The vertical right hand side part is necessarily
a group in E as a quotient of the vertical groupoid (actually the equivalence
relation) ∇X . This group is abelian by Corollary 33.

Definition 72 [8] The abelian group A is called the direction of the affine
object X with global support and will be denoted by d(X).

Proposition 73 Given any abelian group A, its direction is A.

Proof The diagram

A×A
pA0 ��

pA1��

pA1 −p
A
0 // A

τA
��

A
τA

// //

OO

1

0A

OO

shows that the direction is indeed A. �

Since the inclusion Aff(E)� E is full, any morphism f : X → X ′ between
affine objects produces a morphism d(f) making the following diagram com-
mute:

X ×X
f×f
��

qXp // // A

d(f)
��

X ′ ×X ′
qX
′

p

// // A′

Proposition 74 The group homomorphism d(f) is an isomorphism if and
only if f is an isomorphism.

Proof It is clear that if f is an isomorphism, so is d(f). Conversely suppose
d(f) is an isomorphism. Consider the following diagram:

X ×X
f×f ))

pX0

��

pX1

��

qXp // A
d(f)

∼= &&

��

X ′ ×X ′

pX
′

0

��

pX
′

1

��

qX
′

p

// A′

��
X

f **

// //

OO

1

OO

X ′ // //

OO

1

OO

The front and back squares indexed by 0 being pullbacks, and d(f) being
an isomorphism, the left hand side quadrangle is a pullback. But X and X ′
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having global supports, the Barr-Kock Theorem makes the following square
a pullback

X

��

f // X ′

��
1 1

and consequently makes f an isomorphism. �

Moreover the fact that the right hand side square defining A is a pullback
gives X the structure of an A-torsor which is controlled by the choice of
the quotient map qXp . Accordingly we get an internal regular epic discrete

fibration qX : ∇X � A. Let us denote by AbTors(E) the category whose
objects are the pairs (X, qX) where qX : ∇X � A is a regular epic discrete
fibration above an abelian group A (which obviously implies that the object
X is affine with global support and direction A), and whose morphism are the
pairs (f : X → Y, g : A→ B) of a morphism f and a group homomorphism g
such that g · qX = qY · (f × f).

Let us denote by Aff∗(E) the full subcategory of Aff(E) whose objects have
a global support. The previous construction produces a functor Φ : Aff∗(E)→
AbTors(E) which is an equivalence of categories. Furthermore there is an
obvious forgetful functor U : AbTors(E) → Ab(E) such that d = U · Φ. We
shall now investigate the properties of the functor U . We immediately get:

Proposition 75 Given any efficiently regular Mal’tsev category E, the func-
tor U is conservative, it preserves the finite products and the regular epimor-
phisms. It preserves the pullbacks when they exist, and consequently reflects
them.

The restriction about the existence of pullbacks comes from the fact that
the objects with global support are not stable under pullback in general. Here
comes the main result of this section:

Theorem 76 [8] Given any efficiently regular Mal’tsev category E, the func-
tor U is a cofibration. Being also conservative, any map in AbTors(E) is
cocartesian, and any fibre UA above an abelian group A is a groupoid.

Proof First we shall show that there are cocartesian maps above regular
epimorphisms. Let us start with an object (X, qX) in AbTors(E) above the
abelian group A and a regular epic group homomorphism g : A� B. Let us
denote by Rg � X×X the subobject (g·qX)−1(0). It produces an equivalence
relation on X which is effective since the monomorphism in question is reg-
ular. Let us denote by qg : X � Y its quotient. According to Proposition 47,
the object Y is an affine object, with global support, since so is X.

Let us show now that there is a (necessarily unique) map qY : Y ×Y → B
such that qY · (qg × qg) = g · qX . Since qg × qg is a regular epimorphism,
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it is enough to show that g · qX coequalizes its kernel equivalence relation.

For sake of simplicity we shall set qX(x, x′) =
−→
xx′. So we have to show that,

when we have xRgt and x′Rgt
′ (namely g(

−→
xt) = 0 and g(

−→
x′t′) = 0), we

get g(
−→
xx′) = g(

−→
tt′), which is straightforward. It remains to show that the

following square is a pullback of split epimorphisms:

Y × Y
pY0 ��

qY // // B

τB
��

Y
τY
// //

sY0

OO

1

0B

OO

First, we can check that the upward square commutes by composition with
the regular epimorphism qg. Let us denote by ψ : Y ×Y → P the factorization
through the pullback. Since E is a Mal’tsev category, ψ is necessarily a regular
epimorphism by Corollary 53. We can check it is a monomorphism as well in
the following way: consider the kernel equivalence relation Eq[ψ · (qg × qg)];
it is easy to check that it is coequalized by qg × qg. Accordingly Eq[ψ] is the
discrete equivalence relation and ψ is a monomorphism.

Now, given any pair (X,B) of an affine object X with global support
and an abelian group B, the map (1X , 0B) : X → X × B has direction
(1d(X), 0B) : d(X) → d(X) × B, and it is easy to check that it is cocarte-
sian. Then, starting with any group homomorphism h : d(X) → B, we get
the following commutative diagram:

d(X)×B
<h,1B>

$$
d(X)

h
//

(1d(X),0B)
99

B
(0d(X),1B)

dd

where the map < h, 1B > comes from the fact that the product is the direct
sum as well in the additive category Ab(E). Moreover, this map, being split, is
a regular epimorphism. Accordingly the map h has a cocartesian map above
it as well. �

Corollary 77 [8] Given any efficiently regular Mal’tsev category E, the fibre
UA above the abelian group A is endowed with a canonical symmetric closed
monoidal structure ⊗A whose unit is A.

Proof We recalled that UA is necessarily a groupoid. Given any pair (X,X ′)
of affine objects with global support and direction A, the tensor product
X ⊗A X ′ is defined as the codomain of the (regular epic) cocartesian map
above +: A × A → A with domain X × X ′. The commutative diagram in
Ab(E) expressing the associativity of the group law: a+(b+c) = (a+b)+c pro-
duces the desired associative isomorphism a(X,X′,X′′) : X ⊗A (X ′ ⊗A X ′′) ∼=
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(X ⊗A X ′)⊗A X ′′, while the commutative diagram expressing the com-
mutativity of the group law a + b = b + a and the twisting isomor-
phism τ(X,X′) : X × X ′ ∼= X ′ × X produce the symmetric isomorphism
σ(X,X′) : X ⊗A X ′ ∼= X ′⊗AX. The unit of this tensor product is determined
by the codomain of the cocartesian map with domain 1 above 0A : 1 � A,
namely A itself. The left unit isomorphism A⊗A X ∼= X is produced by the
commutative diagram in Ab(E) associated with the left unit axiom 0+a = a,
a similar construction producing the right unit isomorphism.

This monoidal structure is closed since in the abelian context the division
map d(a, b) = b − a is a group homomorphism. We defined [X,Y ] as the
codomain of the cocartesian map above d with domain X × Y . The com-
mutative diagram determined by a + (b − a) = b induces the isomorphism
X ⊗A [X,Y ] ∼= Y , while the one determined by (b + a) − b = a induces the
isomorphism X ∼= [Y, Y ⊗A X]. �

Accordingly this produces an abelian group structure on the set Ext(A)
of the connected components of the groupoid UA whose operation is called
in classical terms the Baer sum.

Starting with the variety Mal of Mal’tsev algebras, the subvariety Aff(Mal)
is the variety of associative and commutative Mal’tsev algebras by Proposi-
tion 8. An algebra X in Mal has a global support if and only if it is non-empty.
Accordingly the choice of a point in any non-empty affine object makes the
fibre UA a connected groupoid, reduces the group Ext(A) to only one object
and makes it invisible.

Now take the example where the Mal’tsev category E is the slice category
Gp/Q of the groups above the group Q, whose affine objects with global
support are the exact sequences with A abelian:

1→ A� X � Q→ 1

The direction of this affine object is nothing but the semi-direct product exact
sequence produced by the Q-module structure on A determined by this exact
sequence. And the Baer sum, described above, coincides with the classical
Baer sum associated with a given Q-module structure on A, see for instance
Chapter 4, Cohomology of groups, in Mac Lane’s Homology [53].

To finish this section, let us be a bit more explicit about the construction
of X ⊗A X ′. In set-theoretic terms, given any pair (X,X ′) of affine objects
with global support, the equivalence relation R+ on X × X ′ producing the

tensor product is given by (x, x′)R+(t, t′) if and only if
−→
xt +

−→
x′t′ = 0, while

the direction on X ⊗A X ′ is such that
−−−−−−−−−→
(x, x′), (z, z′) = −→xz +

−−→
x′z′.

The inverse of an affine object X with global support and direction A is the
affine object X∗ = [X,A], namely the quotient of X × A by the equivalence

relation Rd defined by (x, a)Rd(x
′, a′) if and only if a′ − a −

−→
xx′ = 0. The

direction of X∗ is such that
−−−−−−−−→
(x, a), (z, b) = b − a − −→xz. As expected, we can
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check that we have an isomorphism γ : X → X∗ of affine objects defined by

γ(x) = (x, 0), whose direction satisfies: d(γ)(
−→
xx′) =

−−−−−−−−→
(x, 0), (x′, 0) = −

−→
xx′.
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